High order optimal control of space trajectories with uncertain boundary conditions
نویسندگان
چکیده
A high order optimal control strategy is proposed in this work, based on the use of differential algebraic techniques. In the frame of orbital mechanics, differential algebra allows to represent, by high order Taylor polynomials, the dependency of the spacecraft state on initial conditions and environmental parameters. The resulting polynomials can be manipulated to obtain the high order expansion of the solution of two-point boundary value problems. Since the optimal control problem can be reduced to a two-point boundary value problem, differential algebra is used to compute the high order expansion of the solution of the optimal control problem about a reference trajectory. Whenever perturbations in the nominal conditions occur, new optimal control laws for perturbed initial and final states are obtained by the mere evaluation of polynomials. The performances of the method are assessed on lunar landing, rendezvous maneuvers, and a low-thrust Earth-Mars ∗Corresponding author. E-mail: [email protected] Preprint submitted to Acta Astronautica June 29, 2013 transfer.
منابع مشابه
Numerical Solution of Optimal Heating of Temperature Field in Uncertain Environment Modelled by the use of Boundary Control
In the present paper, optimal heating of temperature field which is modelled as a boundary optimal control problem, is investigated in the uncertain environments and then it is solved numerically. In physical modelling, a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem. Controls are implemented ...
متن کاملTracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit
Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...
متن کاملTracking Control of Uncertain Non - Iinear MIMO System Using Modified Sliding Surfaces for Attitude Large Maneuver of Satellites on Orbit
Designing a robust tracking control for a non-linear MIMO system with uncertainty is one of the most complicated control problems. In this paper, sliding mode changed to non-linear controllable canonical form by input-output linearization. This, sliding surfaces can be defined in a way that we can de-couple equations and indicate the sliding conditions of multi-variable controller system. The u...
متن کاملB-Spline Solution of Boundary Value Problems of Fractional Order Based on Optimal Control Strategy
In this paper, boundary value problems of fractional order are converted into an optimal control problems. Then an approximate solution is constructed from translations and dilations of a B-spline function such that the exact boundary conditions are satisfied. The fractional differential operators are taken in the Riemann-Liouville and Caputo sense. Several example are given and the optimal err...
متن کاملControl Theory and Economic Policy Optimization: The Origin, Achievements and the Fading Optimism from a Historical Standpoint
Economists were interested in economic stabilization policies as early as the 1930’s but the formal applications of stability theory from the classical control theory to economic analysis appeared in the early 1950’s when a number of control engineers actively collaborated with economists on economic stability and feedback mechanisms. The theory of optimal control resulting from the contributio...
متن کامل